
Lecture 17 - Gyroscopes
A Puzzle...

We have seen throughout class that the center of mass is a very powerful tool for evaluating systems. However, 

don’t let yourself get carried away with how useful it can be!

Give a counter-example to the following incorrect statement:

The gravitational force from an extended body of mass M equals the gravitational force from a point mass M 

located at the center of mass.

Solution

Truthfully, you would be hard pressed to find an instance where the above statement is correct. As a simple 

counter-example in 2D, consider the case of a mass m at (1, 0) and another mass m at (-1, 0). If we put another 

mass exactly between them, then the gravitational force on this mass would be zero (the contributions from both 

masses would exactly cancel). However, the gravitational force from a mass 2 m at their center would certainly not 

be zero at this point (it would be infinite!)

Another very famous counter-example is the spherical shell of mass M, radius R, and uniform mass density. A 

well known fact (and one that we prove below in the section "Gravity in a Spherical Shell" below) is that the 

gravitational force from this spherical shell inside the shell is exactly zero at all points! This remarkable fact leads 

to an easy counter-example, since the actual gravitational force inside the shell is zero, while the gravitational 

force from a point mass m located at its center would not be zero.

Gyroscopes

Gyroscopes...are really cool!

As was hinted earlier in the course, gyroscopes are one of the awesome phenomena (along with rolling cones, 

bicycles, etc.) that occur when we let the direction of angular momentum change in 

τ =
ⅆL

ⅆt
(1)

These ideas will be delved into much more deeply in junior level Classical Mechanics. Let me give one more 

example to whet your appetite. 

Try spinning a tennis racket (or a book, etc.) about the axis of its handle (shown on the left in the figure below). If 

you start it off straight, it will rotate very nicely. However, if you try  rotating the tennis racket as shown on the 

right in the figure below, you will never be able to get it spinning nicely. This awesome idea known as the Tennis 

Racket Theorem. (Here are links to a slow motion video and to this effect seen in zero gravity.)
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Problems

Projectile Motion

A ball is thrown at speed v from zero height on level ground. At what angle should it be thrown so that the area 

under the trajectory is maximum?

Falling Stick

A massless stick of length b has one end attached to a pivot and the other end glued perpendicularly to the middle 

of a stick of mass m and length l.

1. If the two sticks are held in a horizontal plane and then released, what is the initial acceleration of the center of 

mass?

2. If the two sticks are held in a vertical plane and then released, what is the initial acceleration of the center of 

mass?

Escape Velocity

1. A rocket is shot radially outwards away from Earth. What would its initial velocity need to be for it to escape 

out to r = ∞? 

2. What is the escape velocity if the rocket is shot tangentially from the surface of the Earth?

Normal Modes

Two masses m are each connected to a wall by a spring with spring constant k. The two masses are connected to 

each other by a spring with spring constant k '. Initially, all springs are unstretched and the masses are at rest. 
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 by  spring  spring  Initially,  springs

While the general motion of this system can be very complicated, there are two very simple motions that we can 

easily analyze.

1. If both masses are shifted to the right by a distance A and then released from rest, what is the frequency of the 

resulting oscillation?

2. If the left mass is shifted right by a distance A and the right mass is shifted left by a distance A, what is the 

frequency of the resulting oscillation?

A Different Potential

A particle of mass m moves in a radial potential given by V[r] = β rk with angular momentum L. Find the radius of 

circular orbit in terms of L, m, k, and β.

Advanced Section: Crazy Chain

Advanced Section: Inelastic Collisions from Multiple Perspectives

A massless string of length 2 l connects two hockey pucks that lie on frictionless ice. A constant horizontal force F 

is applied to the midpoint of the string, perpendicular to it. How much kinetic energy is lost when the pucks 

collide, assuming they stick together?

Initial Time Later Time

Advanced Section: Train Wreck

Example

A cart of mass M1 has a pole on it from which a ball of mass m hangs from a thin string of negligible mass and 

length R attached at a point P. The cart and ball have initial velocity V  (the ball is initially at rest with respect to 

the cart, so it hangs straight down). The cart crashes into another cart of mass M2 and sticks to it. Assume that 

m ≪ M1, M2.

1. Find the velocity V ' of the two carts after the collision

2. Find the smallest initial velocity V  so that the ball will complete a circle around the point P after the collision
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Advanced Section: A Geometric Series of Bounces

Advanced Section: Turning Rope

Advanced Section: Oscillations and Rotations

Gravity in a Spherical Shell

Prove that the gravitational force inside of a spherical shell is zero.

Solutions

Projectile Motion

If the projectile is launched at angle θ, then 

x = (v Cos[θ]) t (22)
y = (v Sin[θ]) t-

1
2

g t2 (23)

The projectile starts off at xmin = 0 at t = 0. The maximum distance (when y = 0) occurs at tmax =
2 v Sin[θ]

g
 at which 

point the projectile has traveled a distance xmax = (v Cos[θ]) tmax =
v2 Sin[2 θ]

g
. We can solve the above equation for 

t =
x

v Cos[θ]
 which we can then substitute into the y equation, 

y = (v Sin[θ]) 
x

v Cos[θ]
 -

1
2

g 
x

v Cos[θ]

2

= Tan[θ] x-
g

2 v2 Cos[θ]2
x2 (24)

This allows us to integrate and compute the total area (A) under the curve of the projectile motion

A = ∫xmin

xmaxTan[θ] x-
g

2 v2 Cos[θ]2
x2 ⅆx

= 
Tan[θ]

2
x2 -

g

6 v2 Cos[θ]2
x3

x=xmin

x=xmax

=
Tan[θ]

2


v2 Sin[2 θ]

g

2
-

g

6 v2 Cos[θ]2


v2 Sin[2 θ]

g

3

=
2 v4

3 g2 Sin[θ]3 Cos[θ]

(25)

We can now integrate the area with respect to θ and set it equal to 0 to maximize it, 

0 =
ⅆA

ⅆθ

=
2 v4

3 g2 3 Sin[θ]2 Cos[θ]2 - Sin[θ]4
(26)

which occurs when Tan[θ] = 3  or equivalently θ = π

3
, which is the desired answer.
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Note that the maximal area equals Amax =
3

8
v4

g2 . By dimensional analysis, the area must have been proportional 

to v4

g2 ! □ 

Falling Stick

1. Calculate τ and L about the pivot point. The torque is due to gravity, which acts on the center of mass with 

magnitude m g b. Using the parallel axis theorem, the moment of inertia around the horizontal axis through the 

pivot (and perpendicular to the massless stick) equals m b2. When the stick starts to fall, τ = ⅆL

ⅆt
= I α yields

m g b = (m b2) α (27)

Therefore, the initial acceleration of the center of mass equals b α = g. This makes sense because the stick initially 

falls straight down, and the pivot provides no force because it does not yet know that the stick is falling.

2. The only difference now is that the moment of inertia equals 1
12

m l2 + m b2. Therefore, τ = ⅆL

ⅆt
= I α yields

m g b = 
1
12

m l2 +m b2 α (28)

so that the initial acceleration of the center of mass equals 

b α =
g

1+ l2

12 b2
(29)

For l ≪ b, this goes to b α → g, which makes sense (i.e. just like for a point mass). For l ≫ b, it goes to zero, which 

makes sense because a tiny movement of the center of mass corresponds to a very large movement of the ends of 

the large stick. Thus, by conservation of energy, the center of mass must move very slowly.

Escape Velocity

Solution

1. The energy of the rocket on the Earth’s surface would be

E =
1
2

m vescape
2 -

G ME m

RE
(30)

The minimum energy required for this rocket to escape out to infinity would require for it to just barely reach 

r = ∞ with no remaining kinetic energy (i.e. it must turn all of its kinetic energy into translational energy to reach 

r = ∞). Therefore we must have

E = 0- G ME m

∞
= 0 (31)

So the defining condition for escape velocity is E = 0, which gives us a simple way to solve for escape velocity 

from Earth’s surface

0 =
1
2

m vescape
2 -

G ME m

RE
(32)

Using ME = 6 × 1024 kg and RE = 6.4 × 106 m, we find vescape = 
2 G ME

RE


1/2

= 11 100 m

s
.

M = 6 × 1024; R = 6.4 × 106; G = 6.67*10-11; m = 1;

2 G M

R

11 183.1

2. More generally, if the rocket was shot in any direction relative to the Earth’s surface, its orbit motion would 

follow the orbit equation we derived last time,

r =
L2

G M m2
1

1+ϵ Cos[θ] (33)
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ϵ = 1+ 2 E L2

G2 M2 m3 
1/2

(34)

An orbit with ϵ ≥ 1 would escape out to infinity, which requires E ≥ 0. Thus, the minimum energy needed to 

escape is E = 0, which implies the same escape velocity vescape = 
2 G ME

RE


1/2

 found above. In other words, having a 

speed vescape pointing in any direction at the surface of the Earth allows you to escape to r = ∞ (provided that your 

orbit does not intersect the Earth, in which case you will crash and burn). □ 

Normal Modes

1. If we ignore the spring in the middle for now, the left and right masses would oscillate about their equilibrium 

positions (defining the right as positive) as

x[t] = A Cos[ω0 t] (35)

where 

ω0 = 
k

m

1/2

(36)

How does the middle spring effect this motion? The distances between the two masses remains fixed at all times, 

so the middle spring remains unstretched and hence does not do anything. Therefore, the above expression 

described the displacement of both masses, and each mass oscillates with the frequency  k

m

1/2

.

2. By the symmetry in this problem, the two masses will oscillate inwards and outwards at the same time.

How can we calculate the frequency of oscillation? Consider the displacement xl[t] of the left mass (since by 

symmetry xr[t] = -xl[t]). The force on the left mass will be

m x
¨

l = -k xl - k ' (2 xl) (37)

where the first term -k xl is the normal spring force from the left spring and the term -k ' (2 xl) is the spring force 

from the middle spring; the factor of 2 comes from the fact that when the left mass moves by a distance xl and 

compressed the middle spring by that amount, the right mass also moves inward by an amount xl and compressed 

the middle spring by the same amount. Simplifying the above expression, 

m x
¨

l = -(k + 2 k ') xl (38)
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which has the solution (with initial conditions substituted in)

xl[t] = A Cos[ω t] (39)

where

ω = 
k+2 k'

m

1/2

(40)

In this case, the masses are oscillating against each other at a larger frequency than in Case 1. □ 

As you will learn in more advanced courses, any motion of the two masses (regardless of how complicated it 

looks) can be broken down into a superposition of these two motions above. These two types of motions are called 

the normal modes of the system.

A Different Potential

The outwards radial force is given by 

F = -
ⅆV

ⅆr
r

= -k β rk-1 r


(41)

For circular motion, the inwards radial force must equal m v2

r
, 

k β rk-1 =
m v2

r (42)

For circular motion, L = m r v so that m v2

r
=

L2

m r3 . Substituting this in and solving for r, 

k β rk-1 =
L2

m r3 (43)

r = 
L2

m k β

1/(k+2)

(44)

Note that if k is negative, then β must also be negative (as in the case of the gravitational potential) for there to be 

a real solution for this circular orbit. □ 

Advanced Section: Crazy Chain

Advanced Section: Inelastic Collisions from Multiple Perspectives

We will solve this in three ways, each way more slick then the last.

Solution 1

Since the string is massless, the forces on the midpoint of the string must sum to zero. Balancing forces in the x-

direction, 

F = 2 T Cos[θ] (51)

The bottom mass feels a the tension force pulling it upwards and to the right. The upwards component of this force 

equals

m ay = T Sin[θ] = F

2
Tan[θ] (52)

When the bottom mass moves a distance y upwards, it is now l - y away from its collision height with the other 

mass. Because the length from the bottom mass to the point of application of the force is l, this implies that 
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 length  point  application  implies

Sin[θ] = l-y

l
. Simple geometry then tells us that

Tan[θ] = l-y

l2-(l-y)2
(53)

We use the trick ay =
ⅆvy

ⅆt
=

ⅆvy

ⅆy

ⅆy

ⅆt
= vy

ⅆvy

ⅆy
 and substitute into the above equation to find

m vy
ⅆvy

ⅆy
= m ay =

F

2
Tan[θ] = F

2
l-y

l2-(l-y)2
(54)

Rearranging, 

m vy ⅆvy =
F

2
l-y

l2-(l-y)2
ⅆy (55)

Integrating, 

∫0
vf m vy ⅆvy =

F

2 ∫0
l l-y

l2-(l-y)2
ⅆy (56)

1
2

m vf
2 =

F

2
 y (2 l- y) 

y=0

y=l

=
F l

2 (57)

This entire kinetic energy is lost by the bottom puck when it collides with the top puck (the velocity in the x-

direction is not effected). Since the top puck loses the same amount of kinetic energy, the total energy lost equals 

F l.

Solution 2

Solution 1 was straightforward, although the integral with y was pretty nasty. As a way to avoid that complicated-

looking function, we can instead proceed as follows

m vy
ⅆvy

ⅆy
=

F

2
Tan[θ] (58)

which can be rearranged to obtain

m vy ⅆvy =
F

2
Tan[θ] ⅆy (59)

Integrating and changing variables from y to θ using y = l - l Sin[θ]

∫0
vf m vy ⅆvy =

F

2 ∫0
lTan[θ] ⅆy

=
F

2 ∫π/2
0 Tan[θ] ⅆ(l- l Sin[θ])

= -
F l

2 ∫π/2
0 Sin[θ] ⅆθ

=
F l

2
(Cos[θ])θ=π/2

θ=0

=
F l

2

(60)

which recoups the answer found above.

Solution 3 (Super slick)

The incredible simplicity of the solution demands an equally simple explanation. Consider two systems, A and B 

where A is the original setup, while B starts with θ already at zero. 

Let the pucks in both systems start simultaneously at x = 0. As the force F is applied, all four pucks will have the 

same x[t], because the same force in the x-direction, namely F /2, is being applied to every puck at all times. After 
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 namely  being applied  every puck

the collision, both systems will therefore look exactly the same. Let the collision of the pucks occur at x = d. At 

this point, F (d + l) work has been done on system A, because the center of the string (where the force is applied) 

ends up moving a distance l more than the masses. However, only F d work has been done on system B. Since 

both systems have the same kinetic energy after the collision, the extra F l work done on system A must be what is 

lost in the collision.

Note that this reasoning makes it clear that this F l result holds even if we have many masses distributed along the 

string, or if we have a rope with a continuous mass distribution. The only requirement is that the mass be symmetri-

cally distributed around the midpoint. □ 

Advanced Section: Train Wreck

1. Using conservation of linear momentum, the final velocity V ' of the two carts stuck together satisfies

M1 V = (M1 +M2) V ' (61)
V ' = M1

M1+M2
V (62)

where we have ignored the tiny mass m because it will continue to move at velocity V  after the collision.

2. After the collision, the mass m undergoing both translational and circular motion. Thus, we can greatly simplify 

this problem by working in the frame moving at velocity V ' after the collision (i.e. the rest frame of the two carts 

after the collision), where the mass m is purely undergoing circular motion about P.

As stated above, the velocity of the mass m will be unchanged immediately before and after the collision, since 

there are no sideways forces acting on this mass during the collision. Hence its velocity at the bottom of the circle 

vbottom immediately after the collision is given by

vbottom = V - V ' = M2

M1+M2
V (63)

How do we determine the minimal speed necessary for the mass m to undergo circular motion? At the very top of 

the circle, both gravity (m g) and the tension force (T) point downwards, and together these two forces must equal 

to the net inwards force 
m vtop

2

R
 where vtop is the speed of the mass. The minimum possible value of the tension is 

T = 0 (since the tension cannot be negative for a string, which would imply that the string is pushing the ball up). 

Therefore, the minimum velocity at the top of the circle must satisfy

m g =
m vtop

2

R
(64)

vtop = (g R)1/2 (65)

We can related vbottom and vtop using the conservation of energy,
1
2

m vbottom
2 =

1
2

m vtop
2 +m g (2 R) (66)

vbottom
2 = vtop

2 + 4 g R (67)
vbottom = (5 g R)1/2 (68)

where in the last step we substitute in Equation (65).

As a quick recap of what we have done: Equation (68) represents the minimum possible speed that m can have at 

the bottom point of its arc so that it will undergo circular motion. On the other hand, Equation (63) represents the 
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 point  undergo  Equation ( ) represents

actual speed of m at the bottom of its arc right after the collision due to conservation of energy. Therefore, by 

setting these two expressions equal to each other, we find the minimum speed V  of the initial cart so that m will 

undergo circular motion, namely
M2

M1+M2
V = (5 g R)1/2 (69)

V = 1+ M1

M2
 (5 g R)1/2 (70)

We can quickly check that the dimensions of this result make sense. We also see that the larger the ratio M1

M2
 is, the 

faster the initial speed has to be. This makes sense, because the larger M1 is, the less it will be slowed down by M2, 

resulting in a smaller initial velocity vbottom for mass m. □ 

Advanced Section: A Geometric Series of Bounces

Advanced Section: Turning Rope

Advanced Section: Oscillations and Rotations

Gravity in a Spherical Shell

Solution 1

The most natural approach is straight-up integration. Consider a point mass m that (without loss of generality) lies 

on the z-axis at coordinate (0, 0, z) where 0 ≤ z < R. By radial symmetry, the gravitational force must point in the z-

direction, so we will only focus on the component of gravitational force in this direction. 

R

z θ

Fgrav

Assuming a uniform mass density σ for the sphere, the gravitational force equals

Fgrav[z] = z


∫0
2 π

∫0
π
-

G m σ R2 Sin[θ] ⅆθ ⅆϕ

R2+z2-2 R z Cos[θ]
z-R Cos[θ]

R2+z2-2 R z Cos[θ]1/2 (110)

where the first term is the typical - G m M

r2  gravitational force and the second term pulls out the z-component of this 

force. The ϕ integral is straightforward and just yields a factor of 2 π. The θ integral, while not trivial, has a simple 

answer.
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Fgrav[z] = z

(-G m σ R2) ∫0

2 π
∫0

π Sin[θ] (z-R Cos[θ])

R2+z2-2 R z Cos[θ]3/2 ⅆθ ⅆϕ

= z

(-2 π G m σ R2) ∫0

π Sin[θ] (z-R Cos[θ])

R2+z2-2 R z Cos[θ]3/2 ⅆθ

= z

(-2 π G m σ R2) 

R-z Cos[θ]

z2R2+z2-2 R z Cos[θ]1/2 
θ=0

θ=π

= z

(-2 π G m σ R2) 

R+z

z2(R+z)
-

R-z

z2 R-z


= 0

That’s a killer result! Of course, we should double check our integration using Mathematica. 

Integrate-
G m σ R2 Sin[θ] (z - R Cos[θ])

R2 + z2 - 2 R z Cos[θ]
3/2

, {θ, 0, π}, {ϕ, 0, 2 π}, Assumptions → 0 < z < R

0

What this means is that inside of a spherical shell, you do not feel any gravitational force! It is as if the shell does 

not exist at all. (The situation is quite different if you are on are outside of the shell, however.) The next solution 

explores some of the symmetries of the sphere that enable this miraculous result.

Solution 2

We can show that inside the shell the gravitational force equals zero by showing that it cancels along each pair of 

circular rings lying between θ and θ + ⅆ θ. Orient the origin at the point that we wish to analyze, and denote the 

distance from the origin to the center of the sphere as a. Call the horizontal and vertical axes as the x-axis and z-

axis. The equation of the circle is x2 + (z + a)2 = R2

We will just consider the cut at y = 0. The equation of the great circle in Cartesian coordinates equals

x2 + (z- a)2 = R2 (112)

Thus, the equation of the circle in spherical coordinates is

r2 Sin[θ]2 + (r Cos[θ] - a)2 = R2 (113)

which we can simplify to

r2 - (2 a Cos[θ]) r+ (a2 - R2) = 0 (114)

which we can solve for r[θ], 

r[θ] = -a Cos[θ] + R2 - a2 Sin[θ]2 (115)

Consider the upper band between angle θ and θ + ⅆ θ. The radius of the band equals r[θ] Sin[θ], and the distance of 

each point on the band from the origin is r[θ]2. The width of the band is given by (ⅆ x)2 + (ⅆ z)2  which we 

calculate using

x = r Sin[θ] (116)
z = r Cos[θ] (117)

Differentiating, 
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ⅆx = ⅆr Sin[θ] + r Cos[θ] ⅆθ (118)
ⅆz = ⅆr Cos[θ] - r Sin[θ] ⅆθ (119)

Thus the width equals

(ⅆx)2 + (ⅆz)2 = (ⅆr)2 + r2(ⅆθ)2 = r '[θ]2 + r2 ⅆθ (120)

We can now calculate the gravitational force from the ring spanning the angle θ to θ + ⅆ θ. Note that the net 

gravitational force from this ring must (by symmetry) point in the z-direction. Assuming a uniform mass density 

σ, the total gravitational force from the ring from angle θ to θ + ⅆ θ on a mass m equals

Fgrav[θ] = (G m σ)
2 π (r[θ] Sin[θ]) r[θ]2+r'[θ]2 ⅆθ

r[θ]2
Cos[θ]

= G m σ π Sin[2 θ] 1+ 
r'[θ]
r[θ]


2

1/2

ⅆθ

(121)

where the factor of Cos[θ] on the right comes from the portion of the gravitational force that points along the z-

direction (all other components of the gravitational force will cancel around the ring by symmetry).

All that remains to show is that when you let θ → π - θ in the above equation, then Fgrav[θ] = -Fgrav
π

2
- θ, which 

would imply that the gravitational force from the ring between θ and θ + ⅆ θ cancels the gravitational force from 

the ring between -θ and -θ - ⅆ θ. Indeed, we find that

Fgrav[π - θ] = G m σ π Sin[2 (π - θ)] 1+ 
r'[π-θ]

r[π-θ]

2

1/2

ⅆθ

= -G m σ π Sin[2 θ] 1+ 
r'[π-θ]

r[π-θ]

2

1/2

ⅆθ
(122)

In other words, we would like to show that 


r'[θ]
r[θ]

 = 
r'[π-θ]

r[π-θ]
 (123)

Carrying out the simple differentiation, 
r'[θ]
r[θ]

=
a2 Sin[θ]2

R2-a2 Sin[θ]2 (124)

so that 
r'[π-θ]

r[π-θ]
=

a2 Sin[π-θ]2

R2-a2 Sin[π-θ]2

=
a2 Sin[θ]2

R2-a2 Sin[θ]2

=
r'[θ]
r[θ]

(125)

This concludes the proof. This result is an astoundingly beautiful symmetry of the sphere. It requires both the 1
r2  

gravitational force as well as the spherical shape. A truly magnificent result. However, this is not the only symme-

try in a sphere, as the next solution shows.

Advanced Section: Another Symmetry of the Sphere

Mathematica Initialization
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